Communications to the editor

FR-900318, A NOVEL PENICILLIN WITH β -LACTAMASE INHIBITORY ACTIVITY

Sir:

A new β -lactamase inhibitor which we named FR-900318¹), 6-sulfoaminopenicillanic acid, has been isolated from the cultured broth of a strain of fungi. The strain was isolated from soil collected at Hikone City, Shiga Prefecture, Japan, and was classified as *Aspergillus candidus* by taxonomic studies and direct comparison with the type strain. This paper describes the fermentation, isolation, biological properties, chemical properties and structure determination of FR-900318.

Aspergillus candidus was cultured at 28°C under agitation (300 rpm) and aeration (15 liters/

Fig. 1. Isolation procedure for FR-900318. Culture filtrate (24 liters)

Activated carbon (6 liters)

washed with water (6 liters) eluted with 60% acetone - water (6 liters) Eluate

concentrated to 500 ml

DEAE-Sephadex A-25 (phosphate type; 500 ml) washed with water (500 ml) eluted with 0.5 M NaCl (1,500 ml)

Eluate

Activated carbon (500 ml) washed with water (500 ml) eluted with 60% acetone - water (1,000 ml)

Eluate

concentrated to 10 ml

Cellulose (150 ml) eluted with 85% acetonitrile - water (200 ml)

concentrated to dryness

Yellow solid (150 mg)

Sephadex G-15 (100 ml)

DEAE-Sephadex A-25 (phosphate type; 20 ml) linear gradient of 0.5 m~1 m NaCl desalted by activated carbon

White powder (27 mg)

Table 1. Antibacterial spectrum of FR-900318.

Test organism	MIC (µg/ml)	
Staphylococcus aureus 209P JC1	>1,000	
Staphylococcus aureus 209P JC1 17-4*	250	
Bacillus subtilis ATCC 6633	500	
Escherichia coli NIHJ JC2	>1,000	
Escherichia coli 114**	4	
Escherichia coli 8S-1**	4	
Escherichia coli J604**		
Escherichia coli 386	1,000	
Proteus vulgaris IAM 1025	>1,000	
Pseudomonas aeruginosa NCTC-10490	>1,000	
Pseudomonas aeruginosa 3***	8	
Citrobacter freundii	1,000	
Serratia marcescens	>1,000	

 * Supersensitive mutants to β-lactam of Staphylococcus aureus 209P.

** Supersensitive mutants to β-lactam of *Escherichia coli*.

*** Supersensitive mutants to β-lactam of *Pseu*domonas aeruginosa.

minute) for 96 hours in 15 liters of a medium placed in 30-liter jar fermentor. The medium consisted of glycerol 2%, corn steep liquor 0.25%, dried yeast 0.25%, cotton seed flour 0.5% and wheat germ 0.5%. The pH of the medium was adjusted to pH 7.0 before sterilization.

The isolation procedure for FR-900318 is shown in Fig. 1. The amount of FR-900318 was determined by the paper disc-plate method using Escherichia coli 8S-1. Using this procedure, 24 liters of culture filtrate yielded 27 mg of FR-900318 in pure form as its disodium salt. Antibacterial spectrum of FR-900318 is shown in Table 1. This test was conducted by serial agar dilution method. One loopful of an overnight culture of each strain in bouillon broth (about 10⁸ viable cells/ml) was streaked on Mueller-Hinton agar containing graded concentration of the drug and the minimal inhibitory concentration (MIC) was expressed terms of $\mu g/ml$ after incubation at 37°C for 20 hours except fungi in which MIC was determined after 3 days of incubation.

Assay system for β -lactamase inhibitors is shown in Fig. 2. Principle of the procedure is synergy or mutual cooperation between β lactamase inhibitors and β -lactamase-sensitive Fig. 2. Detection procedure for β -lactamase inhibitors.

Plates containing ampicillin 10 μ g, 0.1 ml solution of *S. aureus* 209P cultured at 37°C for 4 hours and dilute β -lactamase from various organisms

Pulp containing test samples is placed on the agar

Incubation overnight at 37°C

Samples containing a diffusible β -lactamase inhibitors give rise to zone of inhibition from the protection of the penicillin present in the agar.

Table 2. β-Lactamase inhibitory activity of FR-900318.

Origin of β-lactamase	Rate of dilution for β -lactamase	β-Lactamase inhibitory activity (µg/ml)	
		FR-900318	CP45899*
Citrobacter freundii	1/1,000	31	16
Escherichia coli 386	1/1,000	31	125
Serratia marcescens	1/4,000	31	16
Commercial penicillinase (Difco)	1/2,000	125	16

* Structure of CP45899

antibiotics against β -lactamases. The effect of β -lactamase inhibitors is shown by giving rise to zone of inhibition from protection of the penicillin present in the agar. This method is superior to the spectrophotometric assays^{2,3)} in regard to the sensitivity of β -lactamase inhibitory activity. The β -lactamase inhibitory activity of FR-900318, which is expressed terms of μ g/ml, is shown in Table 2 and preparation of a typical β -lactamase is shown in Fig. 3.

Intravenous administration of 2,000 mg/kg of FR-900318 into mice did not result in any toxic symptom for 2 weeks after injection. FR-900318 as its disodium salt is an acidic, white amorphous powder, soluble in water, slightly soluble in methanol and insoluble in ethyl acetate

Fig. 3. Preparation of β -lactamase.
Inoculation of microorganisms in Antibiotics
medium 3 (Difco)
cultured at 30° C for $4 \sim 5$ hours
Induction (trace of ampicillin)
cultured at 30°C for 18 hours
Harvest of cells
washed with 0.1 M Tris-HCl buffer (pH 7.5)
Sonic (10 minutes)
Centrifuge (10,000 rpm, 15 minutes)
Supernatant

Milipore filter

Table 3. ¹H NMR data of FR-900318.

$\left\{ \begin{array}{c} 1.56 \ (3H, s) \\ 1.67 \ (3H, s) \end{array} \right\}$	$\left\{ \begin{array}{l} 2-lpha-\mathrm{CH}_{3} \\ 2-eta-\mathrm{CH}_{3} \end{array} ight.$
4.23 (1H, s)	H-3
5.08 (1H, d, $J = 4$ Hz)	H-5
5.58 (1H, d, J=4 Hz)	H-6

 δ In ppm downfield from internal TMS.

Table 4. ¹⁸C NMR data of FR-900318.

26.8 29.9	$\begin{cases} \alpha - CH_3 \\ \beta - CH_2 \end{cases}$
61.3	C-6
64.0 67.8	C-2 C-5
73.4	C-3
174.7 176.1	C=0 COOH

 δ In ppm downfield from internal TMS.

and chloroform. It decomposes at $209 \sim 210^{\circ}$ C. The optical rotation is $[\alpha]_{\rm B}^{15}$ +247.5° (*c* 0.1, water). The antibiotic shows no ultraviolet maximum. Color reaction for including β -lactam skeleton is positive to hydroxylamine plus iron alum solution and platinous chloride plus potassium chloride solution. *Anal.* Calcd. for C₈H₁₀N₂O₈S₂Na₂·3H₂O: C 24.36, H 4.06, N 7.10, S 16.20, Na 11.66. Found. C 24.65, H 4.47, N 7.17, S 16.37, Na 11.45. The molecular formula was deduced for FR-900318 on the basis of elementary analysis values, ¹H NMR and ¹³C NMR spectroscopic data. The IR absorption spectrum (KBr) shows absorption bands at 1760 cm⁻¹ (β -lactam); 1210, 1050, 640 and 620 cm⁻¹

(sulfoamide, respectively). The assignment of FR-900318 with the ¹H NMR and ¹³C NMR in D_2O is shown in Tables 3 and 4, respectively. On TLC (Merck silica gel plates 60 F_{254}) FR-900318 has Rf 0.25 (BuOH - AcOH - H_2O , 4: 1: 2).

The structure of the compound was confirmed by derivation from 6-amino penicillanic acid (APA) as shown in following reaction.

Namely, N,N-dimethylaniline was added to 6-APA suspended in CH_2Cl_2 under stirring at room temperature for 30 minutes and chlorosulfonic acid added thereto at $-78^{\circ}C$ and stirring for five hours. The reaction mixture was poured into ice-water containing alkali and adjusted to pH 8. The aqueous solution was purified by DEAE-Sephadex A-25 (phosphate type). The eluate containing 0.5 ~ 0.6 M sodium chloride was collected and then treated with activated carbon to desalt.

The physico-chemical data (TLC, IR, NMR and optical rotation) were identical with those of a natural product.

Michio Yamashita Seiji Hashimoto Masami Ezaki Morita Iwami Tadaaki Komori Masanobu Kohsaka Hiroshi Imanaka

Exploratory Research Laboratories, Fujisawa Pharmaceutical Co., Ltd. 1-6, 2-Chome, Kashima, Yodogawa-ku, Osaka, Japan

(Received August 26, 1983)

References

- YAMASHITA, M.; T. KOMORI, J. HOSODA, H. TANAKA, M. KOHSAKA & H. IMANAKA: Preparation of 6-sulfoaminopenicillanic acid from culture medium of *Aspergillus candidus*. Japan Kokai 82-130,986, Aug. 13, 1982
- WALEY, S. G.: A spectrophotometric assay of β-lactamase action on penicillins. Biochem. J. 139: 789~797, 1974
- O'CALLAGHAN, C.H.; P. W. MUGGLETON & G.W. Ross: Effects of β-lactamase from Gramnegative organisms on cephalosporins and penicillins. Antimicrob. Chemother. -1968: 57~63, 1969